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Abstract: Traditional adaptive beamforming methods undergo serious performance degradation when a
mismatch between the presumed and the actual array responses to the desired source occurs. Such a
mismatch can be caused by desired look direction errors, distortion of antenna shape, scattering due to
multipath, signal fading as well as other errors. This mismatch entails robust design of the adaptive
beamforming methods. Here, the robust minimum variance distortionless response (MVDR) beamforming
based on worst-case (WC) performance optimisation is efficiently implemented using a novel ad hoc adaptive
technique. A new efficient implementation of the robust MVDR beamformer with a single WC constraint is
developed. Additionally, the WC optimisation formulation is generalised to include multiple WC constraints
which engender a robust linearly constrained minimum variance (LCMV) beamformer with multiple-beam WC
(MBW(C) constraints. Moreover, the developed LCMV beamformer with MBWC constraints is converted to a
system of nonlinear equations and is efficiently solved using a Newton-like method. The first proposed
implementation requires low computational complexity compared with the existing techniques. Furthermore,
the weight vectors of the two developed adaptive beamformers are iteratively updated using iterative
gradient minimisation algorithms which eliminate the estimation of the sample matrix inversion. Several
scenarios including angle-of-incidence mismatch and multipath scattering with small and large angular spreads
are simulated to study the robustness of the developed algorithms.

directions errors, uncertainty in array sensor positions,
mutual coupling, imperfect array calibration, multipath

1 Introduction

Adaptive beamforming is a versatile approach to detect and
estimate the signal of interest (SOI) at the output of a
sensor array with applications in wireless communications,
radar, sonar, astronomy, seismology, medical imaging and
microphone array speech processing. Unfortunately,
traditional adaptive array algorithms are known to be
extremely sensitive even to slight mismatch between the
presumed and the actual array responses to the desired
signal [1]. Whenever a mismatch occurs, the adaptive
beamformer inclines to misconstrue the SOI components
in the array observations as interference and hence
suppressing these components is most likely expected. The
errors in array response to SOI can take place due to look

propagation due to local and remote scattering and limited
sample support.

Many approaches have been proposed during the last two
decades to improve the robustness of the traditional
beamforming methods. A survey on these approaches can
be found in [2, 3] and references therein. Among those
approaches, the worst-case (WC) performance optimisation
has been shown as a powerful technique which yields a
beamformer with robustness against an arbitrary signal
steering vector mismatch, data non-stationarity problems
and small sample support [3—10]. The WC approach

explicitly models an arbitrary (but bounded in norm)
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mismatch in the desired signal array response and uses the
WC performance optimisation to improve the robustness
of the minimum variance distortionless response (MVDR)
beamformer [5]. A theoretical analysis for this class of
robust beamformers in terms of signal-to-interference-plus-
noise ratio (SINR) in the presence of random steering
vector errors is presented in [11, 12]. In addition, the
closed-form expressions for the SINR are derived therein.

Unfortunately, the natural formulation of the WC
performance optimisation involves the minimisation of a
quadratic function subject to infinity non-convex quadratic
constraints [5]. The approaches in [5, 6] reformulated the
WC optimisation as a convex second-order cone program
(SOCP) and solved it efficiently via the well-established
interior point method [13]. Regrettably, the SOCP method
does not provide a closed-form solution for the
beamformer weights and even it cannot be implemented
online, whereas the weight vector needs to be recomputed
completely with the arrival of a new array observation

[14-16].

Attractive approaches based on eigendecomposition of the
sample covariance matrix have been introduced in [7-10].
These approaches developed a closed-form solution for a
WC robust detector using the Lagrange method which
incorporates the estimation of the norm of the weight
vector and/or the Lagrange multiplier. A binary search
algorithm followed by a Newton-like algorithm is proposed
in [4, 8] to estimate the norm of the weight vector after
dropping the Lagrange multiplier. Although these
approaches have provided closed-form solutions for the
WC beamformer, they, unfortunately, incorporate several
difficulties. First, eigendecomposition for the sample
covariance matrix is required with the arrival of a new array
observation. Second, the inverse of diagonally loaded
sample covariance matrix is required to estimate the weight
vector. Third, some difficulties are encountered during
algorithm initialisation and a stopping criterion is necessary
to prevent negative solution of the Newton-like algorithm.

In this paper, two efficient ad hoc implementations of the
WC performance optimisation problem are adopted. First,
the robust MVDR beamformer with a single WC
constraint is implemented using an iterative gradient
minimisation algorithm with an ad Aoc technique to
estimate the Lagrange multiplier instead of the Newton-
like algorithm. The proposed algorithm exhibits several
merits including simplicity, low computational load and no
need for  either sample-matrix  inversion or
eigendecomposition. A geometric interpretation of the
proposed implementation is introduced to supplement the
theoretical analysis. Second, a robust linearly constrained
minimum variance (LCMV) beamformer with multiple-
beam WC (MBWC) constraints is developed using a novel
multiple WC  constraints formulation. The Lagrange
method is exploited to solve this optimisation problem,

which reveals that the solution of the robust LCMV

beamformer with MBWC constraints entails solving a set
of nonlinear equations. As a consequence, a Newton-like
method is mandatory to solve the ensuing system of
nonlinear equations which yields a vector of Lagrange
multipliers. It is worthwhile to note that the approaches in
[15, 17] adopt ad hoc techniques to optimise the
beamformer output power with spherical constraint on the
steering vector. Unfortunately, the adaptive beamformer
developed in [17] is apt to noise enhancement at low SNR
and additional constraint is required to bear the ellipsoidal
constraint [15].

The rest of the paper is organised as follows. In Section 2,
the standard MVDR and LCMV beamformers with single
and multiple constraints are summarised in the context of a
single point source and a source with multipath rays,
respectively. In Section 3, the WC optimisation formulation
is introduced by summarising general and special
formulations for the steering vector uncertainty set. Efficient
implementations of single and multiple WC formulations
are derived and analysed in Section 4 and Section 5,
respectively. Moreover, a geometric illustration for the single
WC  implementation is presented. Simulations and
performance analysis are provided in Section 6. Conclusions
and points for future work are encapsulated in Section 7.

2 Standard beamforming
methods

Consider an array comprising M uniformly spaced sensors
receives a narrowband signal s4(£). Initially, it is assumed
that the desired signal is a point source with time-invariant
wavefront, and the M x 1 vector of array observations can

be modelled as [2—5]
x(k) = a4(¢)sq (&) + (k) + n() 1

where £ is the time index, s4(%) the complex signal waveform
of the desired signal and a4(¢) its M x 1 steering vector
where ¢ is the angle of incidence (AOI) and i(%) and n(%)
the statically independent components of the interference
and the noise, respectively.

A generalised model with multipath propagation can be
expressed as follows

L
2B = 550 Y v+ ) +ilH) +nll) ()

n=1

where L is the number of multipaths with each path has a
random complex gain 7, and an angular deviation ¢, from
the nominal AOI ¢. The scattered signals associated with
the multipath propagation from a single source arrive at the
base station (BS) from several directions within an angular
region called the angular spread. The angular spread arises
due to the multipath, both from local scatters near to the
source and near to the BS and from remote scatters.
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It varies according to the cell morphological type (i.e. dense
urban, urban and rural), cell radius, BS location and
antenna height. It can vary from few degrees at rural road
cells to 360° in microcellular and indoor environment due
to the reflecting surfaces surround the BS antenna. It is
assumed that the time delays of the different multipath
components are small compared with the inverse of the
signal bandwidth (i.e. narrowband channel model) and
therefore the delay can be modelled as a phase shift in the
complex gain 7, [18]. The angular spread is used here to

www.ietdl.org

The minimum variance beamformer with single-beam

constraint (SBC) can be formulated as follows
min rwHI’éfw

v (6)

subject to -wHad =1

The solution of (6) engenders the standard MVDR
beamformer with SBC and can be easily derived as

describe the angular region associated with the entire 1
multipaths. Notwithstanding each of the rays itself may be _ R ay
d of al ber of ‘mini-rays’ wi WsBC = T 1 @
composed of a large number of ‘mini-rays’ with roughly MR 4
d d

equal angles and delays but with arbitrary phases due to
scattering close to the source [19]. In this paper, the model
is simplified by using the nominal AOI of each ray group
and multipath delays are modelled as a small angle in the
complex gain.

The beamformer output signal can be written as

Considering the generalised received signal model in (2), the
optimum MVDR beamformer can be obtained using
multiple constraints to provide multiple-beam constraint

(MBC) beamformer, that is

min  w'Rw

¥ (8)

(k) = W (R)x(k) (3) subject to wHA(OO) =
- where 6, = [01 HL] and A(6)) = [a(@l) ﬂ(HL)] is
where x(%) = [x1 ), ..., XM(@] isan M x 1 complex vector the M x L spatial constraint matrix consists of the steering

of the array observations, w(k) = [wl (&), ..., wy (k) ]T is an
M x 1 complex vector of the beamformer weights and )T
and ()H stand for the transpose and Hermitian transpose,
respectively.

Consider the simplified model in (1) with the point source.
The optimal weight vector seeks maximisation of the output
SINR [3-5, 10, 11]

2| v )P
(Td"LUad

SINR = 4)

H
w Ri+nw

where R, ES E[(l(k) + n(2))(i(%) + n(k))H] is  the

interference-plus-noise covariance matrix and O'czi is the
desired source power. The optimal solution of w which
maximises the output SINR in (4) can be obtained by
maintaining distortionless response to the desired source
while minimising the output interference-plus-noise power
(i.e. waRZ» +,w). In practical applications, the interference-
plus-noise covariance matrix can be replaced by the sample
covariance matrix [2—10], which can be estimated using
the first-order recursion

R(m) = > 0" a0 () = nR(n — 1) + x(n)a'(n)  (5)
i=1

where 7 is a forgetting factor which satisfies 0 < 1 < 1.

vectors corresponding to the AOIs of the multipath rays
associated with the desired source and @ is a vector of
the constrained values (i.e. gain vector) which can all be
set to one for equal gain combining or alternatively it
can be optimised using maximal ratio combining
(MRC) technique. Accordingly, the optimal weight
vector of (8), termed as the LCMV beamformer, is given
by [10]

~1 ~—1 \ 1
wype = R A<AHR A) v 9)

3  Robust adaptive MVDR
beamformer with single WC
constraint

The beamforming formulations in (6) and (8) assume that
the array response to the desired source (i.e. the steering
vector a4 of the point source or the spatial matrix A of a
source with multipath rays) is precisely known. However,
practically, the knowledge of the desired source steering
vector or spatial matrix may be imprecise. In this paper, the
recently emerged rigorous approach to robust MVDR
beamforming based on the WC performance optimisation

[3-10] is considered.

First consider the formulation of the standard MVDR
beamformer in (6) with SBC, and following the approaches
in [5-10], to add robustness to the standard MVDR
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beamformer in (7), the WC weighted power output of the
array is minimised in the presence of uncertainties in the

respectively, [10] and [5]

steering vector, that is min @' Rw
. Hp bi H H
min w Rw subject to w ay > |4 w| +1 (17)
) (10) -
subject to ‘waz‘ >1 Vz€Ee H}u%n w Rw
subject to -wHad > {wl +1 (18)

where ¢ is an ellipsoid that covers the possible range of the
imprecise steering vector z. Assuming e is centred at the
presumed steering vector aq [10], that is

e = {du+ayl|ull <1} (11)

where the matrix 4 determines the size and shape of the
ellipsoid &. If 4 =¢I [5-8] is set, the following special

case of & is obtained

e={etaylllell <¢}, e=lu (12)

Assuming that Rin (10) is a positive definite matrix and then
the optimisation problem in (10) along with the generalised
ellipsoid in (11) can be converted to the following form [10]

min wH;{w
” (13)

subject to ‘waad‘ > HAHwH +1

Likewise, the optimisation problem in (10) with the WC
constraint in (12) can be expressed as [5]

. Hp
min w Rw
w

(14)
subject to ‘waad‘ > {Jlwll +1

Unfortunately, the nonlinear constraints in (13) and (14) are
non-convex due to the absolute value function on the left-
hand side. Indeed, the cost functions in (13) and (14) are
unchanged when w undergoes an arbitrary phase rotation
[5-10]. As a consequence, with the optimal solutions of
(13) and (14), it can always rotate without affecting the
cost function optimisation. Therefore the optimal solution
may be chosen, without loss of generality, such that

The constraints in (17) and (18) are called second-order cone
constraints. Two SOCP approaches are proposed in [6] and
[5] for real and complex formulations, respectively.

3.1 Lagrange approach

First form the following Lagrange function

J(w, A) = w'Ruw — /\t(waad — || — 1) 19)

where #(-) is a step function guarantees that
wHad > {lw|+1 and A is the Langrage multiplier. The
inequality constraint in (18) is satisfied by equality if the
cost function in (19) is minimised. This fact can be proved
by contradiction [4, 8] and hence the step function in (19)
is dispensable. By differentiating (19) and equating the

result to zero, one has [4]

Rw+ A -2 = \a,
[lz]|

(20)
By solving for w, the following closed-form solution is
obtained

(21)
lwwcl

-1

Wywe = )\(R+MI> a,
The WC Robust MVDR beamformer in (21) encompasses
three difficulties as follows: the estimation of the weight
vector norm, the estimation of the Lagrange multiplier
which achieves (21) and the computational load of
computing the inverse of the diagonally loaded sample
covariance matrix. In the following two sections, two
techniques are summarised for computing wyyc.

3.1.1 Eigendecomposition method: Several eigen
decomposition approaches have been developed to solve the

Re{waa d] >0 (15) WC performance optimisation problem. The optimisation
problems in (17) and (18) have been solved, respectively, in
Im{wHad} -0 (16) [10] and [4, 8] using eigendecomposition methods. For the

Using (15) and (16), the optimisation problems in (13) and

(14) can be converted to the following convex formulations,

sake of comparison, the approach in [4, 8] is briefly
reviewed. Using the fact that multiplying wyyc in (20) by
any arbitrary constant does not affect the bit error rate
performance of the beamformer [4, 8], a scaled version of
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the WC beamformer can be obtained as follows [4]

-1
| @wel

A binary search algorithm followed by Newton—Raphson
iterations is proposed in [8] to compute the norm of the
WC  beamformer ||@wc|. The eigendecomposition
approach accurately estimates the norm of the robust
detector |wyc|| and hence the optimal weight vector can
be obtained using the closed form in (22).

(22)

3.1.2 Taylor series approximation method: By
applying the Taylor series expansion to (22) analogous to
the approach in [20], the following

. <l |
wye = I +-—=——R R ay
”wWCH
~—1
=R wspc

e

(23)
&~ Wspc —

~—1
is obtained, where wggc = R a4 is a biased version of the
standard MVDR beamformer in (7). By introducing a new
1
vector Wwgge = R wgpc and substituting into (23) yield
Wy = Wepe — KWspe (24)
where k = {/|@ycl||is a parameter related to the weight
vector norm of the WC robust beamformer and can be
estimated by plugging (24) into the WC constraint in (18).
This approach is almost similar to the eigendecomposition
approach where low complexity is introduced at the
expense of the weight vector norm estimation accuracy
owing to Taylor series approximation.

4 Efficient implementation of
robust adaptive MVDR beamformer
with single WC constraint

In this section, efficient adaptive implementations of robust

adaptive MVDR beamformer based on WC performance

www.ietdl.org

determined at snapshot # and u(%) an adaptive step size
which determines the convergence speed of the algorithm.

The gradient vector of the cost function in (19) is given by

T YD g,y (tte)

dw [l

(26)

The step function is dropped due to ad hoc adaptive
implementation. Hence, the adaptive weight vector can be

obtained by substituting (26) into (25), which yields

w(k+ 1) = w(k) — wBAREw(R)

+ uPA (“d - Mk)) ©7)

w2

For simplicity, two new vectors are introduced: w(% + 1) =
w(k) — w(&)R(k)w(k) (referred to as unconstrained MV
weight vector) and (%) = ay — {w(%)/||w(%)||. Therefore
the weight vector of the robust WC adaptive beamformer
can be updated as follows

w(k+1) = wlt+ 1) + w@)Am(k) (28)

4.1 Lagrange multiplier estimation

We assume that the weight vector w(%) satisfies the WC
constraint in (18) and then, w(% + 1) should also satisfy the
WC constraint. The weight vector w(t+ 1) represents the
minimisation of the unconstrained MV cost function (i.e.
wHRw) which leads to trivial zero solution if the additional
WC constraint is not imposed. In order to fully satisfy the
inequality constraint in (18), first the weight vector
w(t+1) is computed and then it is verified if w(t+1)
achieves the WC constraint in (18). Consequently, if
w(k+ 1) satisfies the WC constraint, the weight vector is
accepted and the algorithm continues with a new array
observation. Otherwise, (28) is substituted into the
inequality constraint in (18) to estimate the Lagrange
multiplier as follows

_ H
Re{ (w(k +1)+ M(é)/\ﬂ(k)) ad}

optimisation is developed. The WC performance R (29)
optimisation =~ MVDR  beamforming is efficiently >{ H (’w(k +1)+ M(k))\ﬂ(k)> H +1
implemented using  iterative gradient minimisation

algorithm with ad hoc technique to satisfy the WC constraint.

The adaptive beamformer can be found by searching for a
weight vector w that minimises the cost function (19). In
order to find the target beamformer in an iterative manner,
the weight vector can be updated as follows

where Re{e} is inserted to make sure that (15) and (16) are
always guaranteed during adaptive implementation. After
arranging and boosting both sides of (29) to the power of two

H 2
(Re{ (@(k +1)+ ,u(/e)/\w(k)) ad} - 1)

(30)
= — ~ 2
where £ is the snapshot index, V(%) the gradient vector of the
Lagrange function J(w, A) in (19) with respect to w is obtained.
IET Signal Process., 2008, Vol. 2, No. 4, pp. 381-393 385
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By rearranging (30), one has

~ 2
((Re{fw(k + l)Had} - 1) + ,LL(k)/\Re{ ﬂ(k)Had})
2 H/
> (@ + 1) + w@Am®) (wlk+ 1) + p@r(B)
31)
The Lagrange multiplier A which achieves the WC constraint
in (18) needs to be estimated. During the ad hoc
implementation, (31) will be solved only if the WC
constraint is not met. Following this fact, the inequality in

(31) is replaced by equality and after some manipulations to
(31), one has

¥+ 2000 e+ (RN (w0,
e He?u(,é 1) “2+2M(/e)§2ARe{ () (e + 1)}
+ u@’ X =B (32)
where y = Re!@(/e—f- 1)Had} —1.

Therefore the Lagrange multiplier A can be computed as
the solution to the following quadratic equation

u(é)z)@((Re{w(é)Had})2—§2||w<é)||2)
+ 2,L(/Q)A(XRe| ﬂ(k)Had} - §2Re{ (B w(k + 1)})
T gZHJU(kH)HZ:o (33)

Therefore the value of A which achieves the WC constraint in
(18) has the following form

(34)

where

A= ,LL(,%)Z((Re{W(,%)Had})2_52”77(@”2)
B = u(®) (xRef m(0'"ay | — PRef w0 e+ 1))

_ 2
C=x - &|ate+ 1) (35)
The Lagrange multiplier estimation is merely execHted when
the WC constraint is not achieved, that is, y < | w(% + 1) H
Therefore C < 0 and the roots of (33) fall under one of the

following categories.

e />0 and B>0:
Equation (33) has two real roots: one positive root and one
negative root resulting from positive and minus signs in

(34), respectively. The positive root is selected to make sure

~ -1
that (R + A/ | wrmy |1 ) is a positive definite matrix.

e A<0 and B>0:
Equation (33) has only one real positive root resulting from
positive sign in (34) if B > AC.

e A>0 and B<O:
Therefore (33) has two positive real solutions. In this case,
the smaller root is selected to guarantee algorithm stability.

e A<0 and B<O:
Equation (33) is guaranteed to have one real positive solution
if B> > AC.

4.2 Recursive implementation

The optimum step size of minimising w'’Rw is the best
estimate to the optimum step size which minimises (19).
As a consequence, the optimum step size can be obtained
by substituting (25) into (19) and differentiating with
respect to the adaptive step size, then equating the result to
zero, the following optimum step size is obtained [15, 21, 22]

. oV (HV()

= (36)
VH(Z)R(£)V (k)

Mopt
V=R(®)w(#)

The parameter « is added to improve the numerical stability
of the algorithm. For a practical system, it should be adjusted
during initial tuning of the system and it should satisfy
0<a<1]21,22].

To summarise, the proposed WC robust adaptive
beamformer algorithm consists of the following steps.

Step 0. Tnitialise: R(0) = I, w(0) = a;, a = 0.1, n = 0.97

Step 1. Pick a new sample from array observations and
compute _ the sample covariance matrix:

R(%) = nR(%E — 1) + oA (k); M>.
Step 2. Compute the optimum step-size using (36); M 242M.

Step 3. Update the unconstrained MV weight vector:
w(k+1) = w(k) — wB)R(Hw(k); the matrix vector

multiplication ;{(k)fw(k) is computed in step 2.

Step 4. If x < {H&)(k + 1)” compute A using (34); 5M.
Else A =0 and w(%+ 1) = w(t+ 1) — go to step 1.

Step 5. ppdate the WC  weight vector as:
w(k+ 1) = w(k+ 1) + w(k)Am(k) — go to step 1.

As shown in the above implementation, the total
multiplications complexity of the proposed algorithm is
about O(ZM 24 7M ) More interestingly, the WC
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optimisation step with the ad hoc implementation requires
O(M) complexity while it requires o) using SOCP,
and in the eigendecomposition method, the estimation of
the norm vector of the WC weight vector requires O(M %)
alone [3-8].

4.3 Geometric interpretation of the
proposed WC beamformer

In order to further illustrate the proposed algorithm, it is
exemplified using a geometric interpretation. Fig. 1
represents the geometric illustration for the proposed WC
adaptive beamforming implementation using simple Z_D)
case similar to the approach in [23]. The vector %
represents the presumed steering vector ay. The vector OB
represents the WC robust beamformer at snapshot 4. The
concentric ellipses represent the unconstrained MV cost

function, that is, w Rw and the centre of these ellipses is
the minimal point (i.e. trivial zero solution) that minimises
this cost function. Assuming that the WC weight vector
w(k)  satisfies the WOC  constraint, that is,

H
0B 04 > Hﬁé H + 1. The forthcoming update of the

unconstrained MV  weight vector is computed as
w(Z+ 1) = w@) — WAHRBw(E), that s,
OC = OB + BC. As depicted in Fig. 1, the vector BC
represents the gradient of the MV cost function, that is,
—u(k)R(Z)w(%), which is perpendicularly inward inside the
contours and towards_the centre of the ellipsis. When the
subsequent vector OC does not satisfy the WC constraint
— H —
(iie. OC 04 < {H ocC H + 1), the condition in the step 4

in the algorithm is met, and subsequently, the vector
=

AE = —{w(%)/|lw(%)|, which parallel to the vector BO,
— — — —>
is added to OA to estimate (%) (i.e. OF = OA4 + AE).
Then, the WC weight vector ﬁ)) = w(k+ 1) is generated
by adding the vector C—D) = (k) A7(k), which is parallel to

— — — = —
the vector OE, to the vector OC, (i.e. OD = 0C + CD).
Consequently, the ensuing weight vector OD satisfies the

wik+1) wik)
23]

kA (k) w(k+D"a,

wk+1)"a,

IS
Cwtk+1)|+1

wik)

—u(kY ROy w(ky

Figure 1 Geometric interpretation of the proposed ad hoc
implementation

www.ietdl.org

WC constraint. In a nutshell, the WC constraint prevents
the weight vector from reaching the trivial zero solution by
maintaining distortionless response to a set of possible
steering vectors which is controlled by the WC constraint.

5 Robust LCMV beamforming
with MBWC constraints

The majority of the developed robust techniques in
beamforming literature are based on single constraint in the
desired look direction [3—10, 14—16]. Therefore if the
desired source experiences multipath propagation and
impinging on the antenna array from different angles
associated with the dominant multipath rays, the robust
technique with single constraint is not capable of gathering
all multipath components, especially with large angular
spread. Alternatively, the robust technique may concentrate
only on the nominal AOI and neglect other components
scattered in different multipaths which is not optimal in
terms of optimising the output SINR. As a consequence, it
is worthwhile to generalise the WC robust technique to
include multiple constraints to form the robust LCMV
beamformer with MBWC constraints analogous to the
standard LCMV beamformer with MBC in (9). A
generalisation for (18) with MBWC constraints can be
expressed as

. <H-oo
min w Rw
w

(37)

_H -
subject to w A > vaH +1i

where A isan M x N spatial matrix of the desired source, v a
1 x N vector consisting of the WC constrained values and 7 a
1 x N all-one vector where N is the number of WC
constraints (i.e. dominant multipath components, N < L).
Then, a generalised cost function corresponding to (19) can
be expressed as

Ow, ) = w Rw— (@HA - vH{vH - i)T (38)

where 7is an V x 1 vector of Lagrange multipliers. The step
function is dropped due to ad Aoc implementation. The
following equations are corresponding to (26) and (28),
respectively

vzmg‘z’”’)zka— (A—v(ﬁ))f (39)

w(t+1) = w(k+ 1) + wRA7(2) (40)

where A = A — v(;u(,é)/H fcvv(k)”) is an M x N matrix and
w(k+1) = w(k) — pd(k)k(k);v(/e) is similar to w(% + 1).

The vector of Lagrange multipliers is obtained by
substituting (40) into the set of WC constraints in (37)
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which engenders the following set of nonlinear equations

(@(é T+ ,u(/z)/-\f(é)H)A

—v|wt+ 1)+ w@ATR)| —i=0

(41)

where 0 is the all-zero vector. Unfortunately, a closed-form
solution similar to (21) cannot be obtained because (41) is
a system of nonlinear equations. In this case, a Newton-like
method is obligatory to find the optimum vector of
Lagrange multipliers 7(%) that satisfies the set of WC
constraints in (37). The trust region method [24, 25] is
adopted to solve the system of nonlinear equations in (41).
A minor drawback of this technique is that all WC
constraints have to be solved via reducing them to equality
if any of the WC constraints is not achieved.

The algorithm of the robust LCMV beamforming with
MBWTC consists of the following steps.

Step 0. Initialise k(O) =1, w(0) =ay, « = 0.5, 1=0.97.
Step 1. Pick a new sample from array observations and

compute _ the sample covariance
R(E) = qR(k — 1) + x(&)x" (&); M.

matrix as

Step 2. Compute the optimum step size using (36) where
V < R(Bw(k); M* + 2M.

Step 3. Update the unconstrained MV weight vector as
w(t+ 1) = w(k) — wf)R(H)w(k); the matrix
multiplication R(£)w(4) is computed in step 2.

vector

Step 4. Tfany (w(% + 1) A > vl|w(% + 1)|| + i); (MN + M)
Compute 7(4) by solving (41); 2MN + M)(M + 1)R, where
R is the required number of iterations for the trust region
method convergence.

Else 7(#) = 0 and w(t + 1) = w(t + 1)— go to step 1.

Step 5. Update the weight vector of robust LCMV
beamformer using (40) — Go to step 1.

As demonstrated in the above implementation, the
robust LCMV beamformer with MBWC constraints
requires O(M?(2NR + R +2) + M(2NR + N + R + 3))
complexity. Indeed, it requires higher computational load;
however, it cannot be compared with the single WC
beamformers. Several simulation scenarios demonstrated
that the trust region algorithm requires 4 to 12 iterations
for convergence.

6 Numerical examples

A uniform linear array of M =5 omnidirectional sensors
spaced half-wavelength apart is considered. All results are
obtained by averaging 100 independent simulation runs.
Through all examples, it is assumed that there is one
desired source at 0° and two interfering sources at 45° and

60°. In the last two scenarios, a source with multipath
propagation is considered. However, the main multipath
component with dominant power is considered at 0°. The
desired source is 5 dB power and each interference-to-noise
ratio is equal to 10 dB. The noise power at each antenna
element is equal to 0 dB to model a low SNR environment.

6.1 AOI mismatch scenario

In this scenario, the performance of the standard MVDR
beamformer in (6) (referred to as standard MVDR), the
robust MVDR beamformers with WC constraint which
implemented using SOCP [5, 6] and eigendecomposition
[4, 8] approaches (referred to, respectively, as robust
MVDR-WC/SOCP and robust MVDR-WC/EigDec),
and the proposed robust adaptive beamformer outlined in
Section 4.2 (referred to as robust MVDR-WC/proposed)
are compared. The aforementioned beamformers are
simulated using a mismatched steering vector of the desired
source where the presumed AOI equals 5°. The robust
MVDR-WC/EigDec beamformer is computed using (22)
and its norm is obtained using a Newton-like algorithm
[4, 8]. In addition, the benchmark MVDR beamformer at
(7) is simulated with the actual steering vector of the
desired source. The benchmark MVDR beamformer is
implemented using the well-known RLS algorithm. The
update of the sample covariance matrix in (5) is used with
all beamformers with 1 =10.97. The WC constrained
parameter { = 1.8 is chosen for both robust MVDR-WC/
EigDec and robust MVDR-WC/proposed beamformers,
whereas { =3 is chosen for robust MVDR-WC/SOCP
beamformer. This is because the SOCP method is
initialised with normalised weight vector [5, 6]. The WC
constrained parameter is selected based on the best
performance achieved from several simulation runs. In
practical, it is selected based on some preliminary (coarse)
knowledge about wireless channels or using Mont Carlo

simulation. Fig. 2 shows the output SINR of the

¢ Standard MVDR

O Robust MVDR-WC/SOCP
Robust MVDR-WC/EigDec
*  Robust MVDR-WC/Proposed
O  Benchmark MVDR

SINR (dB)
@,\
D>

0 100 200 300 400 500 600 700 800 900
Snapshot

1000

Figure 2 Output SINR against snapshot index for the first
scenario
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abovementioned beamformers against snapshot and beam 15

patterns against AOI is illustrated in Fig. 3. The proposed ] AR
algorithm offers the best SINR compared with other robust pag A AlAAA
approaches and even faster convergence speed over the 10 g 5 g:g_;]

|-
benchmark MVDR beamforming with the RLS algorithm. éié;i@:gg
The eigendecomposition and SOCP methods are
considered as batch algorithms where the weight vector of

the robust MVDR-WC/EigDec beamformer is computed

/e/e/(

N

using the closed-form in (22) and the weight vector of the 0 ’% Pad
robust MVDR-WC/SOCP beamformer is recomputed
completely with each snapshot [5]. Finally, the proposed y 9// —&— Standard MVDR
algorithm is the best at eliminating sidlobes and B 4 Robust MVDR-WC/SOGP
interference compared with other robust approaches as Robust MYDR-WG/EigDec

. ! p o PP € —*— Robust MVDR-WC/Proposed
evident from Fig. 3 where it is ranked after the Benchmark —B— Benchmark MVDR

10

MVDR beamformer. 20 15 10 5 0 -5 -0 -5 20 25 30

Noise power (dB)

Fig. 4 shows the output SINR against noise power using Figure 4 Output SINR against noise power for the first
50 fixed training sample size (i.e. low sample support). The scenario with training data size N = 50
figure conspicuously demonstrates the superiority of the
proposed beamformer especially at low noise power (i.e.
high SNR) thanks to its optimality at low snapshot index

as observed from Fig. 2. o0 .
x 10 A x 10 B
3 6
In order to analyse the Lagrange multiplier in (34), the I
parameters of (33) which are given in (35) are investigated. 2| 4
These parameters and the Lagrange multiplier A (referred
to as WC parameters) are plotted against snapshot index in 1} 2|
Fig. 5 at { = 1.8. The figure illustrates that 4 > 0, B >0 1 -
and C < 0. Therefore (33) has one real positive root as 00' — 2= ol — S T e
explained in Section 4.1. It has to be noted that the Snapshot Snapshot
algorithm commenced into the WC optimisation from the ) )
first snapshoot as shown in Fig. 5. 0 c 4 X0 "
It is worthwhile to investigate the sensitivity of the \ ? ’
proposed algorithm against the WC constrained value 0054 2
(ie. ). Fig. 6 demonstrates the performance of the U AL A A e

proposed algorithm at several ¢ values. It reveals that the

-0.1 0%

0 500 1000 0 500 1000
Standard MVDR Snapshot Snapshot
""" Robust MVDR-WC/SOCP
Frobisal MYDRWC/EIgDo: Figure 5 WC parameters of the robust MVDR-WC/
) K Robust MVDR-WC/Proposed
Benchmark MVDR proposed beamformer at { = 1.8

algorithm performs well at a reasonable window of
¢ =[1.4:2.2] with optimality at { = 1.8 in terms of start-
up performance. Indeed, { is a crucial factor for any WC
performance optimisation algorithm and it should be
properly selected. As shown in Fig. 6, the algorithm starts
to degrade when { is decreased because the algorithm is no
longer capable of handling the mismatch degree. For
clarity, the WC parameters at {=1.2 are illustrated in
; " ; Fig. 7, which are almost analogous to Fig. 5 where
i A>0,B>0 and C < 0. However, the algorithm delays

2 5 -1 05 e L 15 2 executing the WC optimisation because { is very low and

subsequently the algorithm performance is degraded. More

Figure 3 Steady-state array beam patterns against AOI (in preciously, the algorithm executes the unconstrained MV

radian) for the first scenario minimisation without WC optimisation more than
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Figure 6 Effect of WC parameter { on the output SINR of 0 500 1000 0 500 100¢
Snapshot Snapshot

the first scenario

Figure 8 WC parameters of the robust MVDR-WC/
proposed beamformer at { = 2.4

x 10" o 152 10° : implementation to guarantee that 4 > 0 and therefore the
complex solution of (33) could be prevented. However,
' 1 during initial iterations of some runs, one may have 4 < 0
1 while B2 > AC and therefore the algorithm can continue
i 0.5 without adjusting {. Consequently, the best practice is to
' verify if 4 <0 and B> < AC are met, and if so, { is
OF—+ = o or—+ e o] decreased. The WC algorithm in Section 4.2 is revised by
Snapshot Snapshot amending step 4 as follows.
c A
oF 8000 ~ .
Step 41f x < {“w(,é + 1)|, compute A using (34); 5M.
6000
-0.01
1000 If (4< O(Jiz <AC)),{={-0.1, end Else A=0 and
0.02 w(k+ 1) = w(k+ 1)< go to step 1.
WMM-’V 2000
0.03; s i o%—+ =5 Sl Another simulation is conducted to evaluate the
Snapshot Snapshot performance of the above modified robust MVDR-WC/

Figure 7 WC parameters of the robust MVDR-WC/
proposed beamformer at { = 1.2

necessary and hence a part of the interested signal is
suppressed and it could not be recovered again with
adaptive implementation.

Finally, the algorithm performance is seriously degraded
when ( is increased to 2.4 as shown in Fig. 8. The WC
parameters at ¢ =2.4 are shown in Fig. 8 which
demonstrate that 4 <0, B> 0, C <0 and, in turn, (33)
has one real positive root if B’ > AC. Regrettably, the
preceding condition could not be achieved where |C| >=> 0
and hence the solution of (33) has two complex roots and
therefore the algorithm performance is seriously degraded.
The plot of parameter A in Fig. 8 is only for real part. In
order to avoid complex solution to (33), the WC
constrained value ¢ can be adjusted during adaptive

proposed beamformer. The modified algorithm is initialised
with the same parameters of the first scenario except that
{ =3. The WC parameters and the output SINR for the
modified robust MVDR-WC/proposed beamformer are
demonstrated in Figs. 9 and 10 respectively. Fig. 9
indicates that the algorithm starts with
A<0,B>0,C<0 and B> < AC and then ¢ starts to
decrease until an acceptable value which prevent complex

solution of (33).

6.2 Small angular spread scenario

In this scenario, a desired source with small angular spread
emerging from multipath propagation as in rural cells is
simulated. The same parameters of first scenario are used
except that the SOI is impinging on the array from three
directions associated with three multipath rays. There is a 5°
mismatch with the dominant multipath ray. The other two
rays amplitudes are 40% of the main component and they are
impinging on the array from the directions 4° and —3°. The
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Figure 9 WC parameters of the modified robust MVDR-
WC/proposed beamformer at { = 3

maximum angular spread (i.e. 4°) associated with the multipath
components in this scenario is less than the AOI mismatch of
the dominant multipath ray (i.e. 5°). In addition to the five
beamformers simulated in the first scenario, the benchmark
LCMYV beamformer in (9) with MBC is simulated, which is
imposed towards the three actual AOIs (i.e. 0°, 4°, —3°) of
the multipath rays (referred to as benchmark LCMV). The
multipath  components in the benchmark LCMV
beamformer are combined using MRC. The benchmark
MVDR beamformer in (7) is simulated using only the actual
steering vector of the dominant multipath ray. The WC
parameter { of the robust beamformers is selected as in the
first scenario. The performance of the aforesaid beamformers
in terms of SINR is illustrated in Fig. 11. The proposed
algorithm offers about 2 dB improvement over other robust
approaches as evident from Fig. 11. The performance of the
benchmark MVDR beamformer is degraded below the robust
approaches, whereas the WC constraint bears the robust
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Figure 10 Output SINR against snapshot index for the
modified robust MVDR-WC/proposed beamformer with
the parameters of the first scenario
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Figure 11 Output SINR against snapshot index for the
second scenario

beamformers by picking up some signal components from the
multipath signals scattered inside the mismatch region

bounded by .

6.3 Large angular spread scenario

In this scenario, a large angular spread as in the cellular indoor
environment is simulated. The simulation system is similar to
the previous scenario except that the three multipath
components are impinging on the array from directions 0°,
—30° and —80°. The dominant ray impinges on the array
from 0° direction and there is a 5° look direction mismatch. It
is assumed that the phases of the multipath rays are
independently and uniformly drawn from the interval
[— 7, 7] in each run. The phases associated with multipaths
vary from run to run and stay constant during adaptive
implementation of each run. In this scenario, the
beamformers in the previous experiments are simulated in
addition to the proposed robust LCMV beamformer with
MBWTC constraints (referred to as robust LCMV-MBWC).
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Figure 12 Output SINR against snapshot index for the third
scenario
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Moreover, the standard LCMV beamformer with multiple
constraints in (9) (referred to as standard LCMYV) is simulated
using a mismatched steering vector of the dominant multipath
ray while there are no mismatches with the other two rays (i.e.
5% —30° —80°). The multipath rays of the benchmark
LCMYV and the standard LCMV beamformers are combined
using MRC. The phases of multipath rays are unknown to all
beamformers except the benchmark beamformers. The
beamformers of the first scenario are simulated using the same
parameters, whereas the robust LCMV-MBWC beamformer
is simulated using v =[1.6 0.2 0.2 ]. The selection of v
is obtained practically using several simulation runs. It is
somehow embodying the amplitude distribution of multipath
rays. However, in-depth analysis for tuning this vector and
even optimal estimation is a good candidate for future
research. The SINR performance of the seven beamformers is
demonstrated in Fig. 12. First of all, the benchmark LCMV
is considerably degraded, despite tracing the dominant
multipath ray. This is because the large angular spread
deforms the effective steering vector of the SOI. The
performances of the robust beamformers with the single WC
constraint resemble their performances in the first scenario.
The robust LCMV-MBWC beamformer offers about 1 dB
improvement over the single WC constraint beamformers due
to efficient multipath handling using multiple WC constraints.

7 Conclusions

In this paper, the robust adaptive beamforming using WC
performance optimisation is implemented using novel ad hoc
approaches. Two efficient implementations are developed
using single and multiple WC constraints. The proposed
implementations are based on iterative gradient minimisation.
In contrast to the existing single WC robust approaches, the
proposed single WC implementation requires very low
computational load and it engenders the best performance,
especially at low sample support. In addition, the proposed
algorithm eliminates the covariance matrix inversion
estimation. The WC performance optimisation is generalised
to include multiple WC constraints which produce a robust
LCMYV beamformer with MBWC constraints. An efficient
solution for the LCMV-MBWC beamformer is introduced
by solving a system of nonlinear equations. Simulation results
demonstrated the superiority of the proposed beamformers
over the existing robust approaches. Future research may
include fine-tuning of the constrained vector of the LCMV-
MBWC beamformer and developing low complexity adaptive

implementations.
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